Backward stochastic differential equations and backward stochastic Volterra integral equations with anticipating generators

نویسندگان

چکیده

For a backward stochastic differential equation (BSDE, for short), when the generator is not progressively measurable, it might admit adapted solutions, shown by an example. However, Volterra integral equations (BSVIEs, generators are allowed to be anticipating. This gives, among other things, essential difference between BSDEs and BSVIEs. Under some proper conditions, well-posedness of such BSVIEs established. Further, results extended path-dependent BSVIEs, in which can depend on future paths unknown processes. An additional finding that general, situation anticipating avoidable, adaptedness condition similar imposed anticipated Peng−Yang [22] necessary.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mean-Field Backward Stochastic Volterra Integral Equations

Mean-field backward stochastic Volterra integral equations (MF-BSVIEs, for short) are introduced and studied. Well-posedness of MF-BSVIEs in the sense of introduced adapted Msolutions is established. Two duality principles between linear mean-field (forward) stochastic Volterra integral equations (MF-FSVIEs, for short) and MF-BSVIEs are obtained. Several comparison theorems for MF-FSVIEs and MF...

متن کامل

Forward-Backward Doubly Stochastic Differential Equations with Random Jumps and Stochastic Partial Differential-Integral Equations

In this paper, we study forward-backward doubly stochastic differential equations driven by Brownian motions and Poisson process (FBDSDEP in short). Both the probabilistic interpretation for the solutions to a class of quasilinear stochastic partial differential-integral equations (SPDIEs in short) and stochastic Hamiltonian systems arising in stochastic optimal control problems with random jum...

متن کامل

Reflected backward doubly stochastic differential equations with time delayed generators

We consider a class of reflected backward doubly stochastic differential equations with time delayed generator (in short RBDSDE with time delayed generator), in this case generator at time t can depend on the values of a solution in the past. Under a Lipschitz condition, we ensure the existence and uniqueness of the solution.

متن کامل

Anticipated Backward Stochastic Differential Equations

In this paper, we discuss a new type of differential equations which we call anticipated backward stochastic differential equations (anticipated BSDEs). In these equations the generator includes not only the values of solutions of the present but also the future. We show that these anticipated BSDEs have unique solutions, a comparison theorem for their solutions, and a duality between them and ...

متن کامل

Harmonic Analysis of Stochastic Equations and Backward Stochastic Differential Equations

The BMOmartingale theory is extensively used to study nonlinear multi-dimensional stochastic equations (SEs) inRp (p ∈ [1,∞)) and backward stochastic differential equations (BSDEs) in Rp × Hp (p ∈ (1,∞)) and in R∞ × H∞, with the coefficients being allowed to be unbounded. In particular, the probabilistic version of Fefferman’s inequality plays a crucial role in the development of our theory, wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Probability, Uncertainty and Quantitative Risk

سال: 2022

ISSN: ['2367-0126', '2095-9672']

DOI: https://doi.org/10.3934/puqr.2022018